Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.15.23285584

ABSTRACT

The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also caused innumerable cases of post-infectious syndromes, colloquially referred to as long COVID. Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms. We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2. Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues, but transcriptomic analysis revealed distinct gene signatures compared to the two control cohorts, indicating immune dysregulations and altered metabolic pathways. We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain.


Subject(s)
Chronobiology Disorders , Fatigue , Myalgia
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.16.22283804

ABSTRACT

In COVID-19 neurological alterations are noticed during the systemic viral infection. Various pathophysiological mechanisms on the central nervous system (CNS) have been suggested in the past two years, including the viral neurotropism hypothesis. Nevertheless, neurological complications can also occur independent of neurotropism and at different stages of the disease and may be persistent. Previous autopsy studies of the CNS from patients with severe COVID-19 show infiltration of macrophages and T lymphocytes, especially in the perivascular regions as well as pronounced microglial activation, but without signs of viral encephalitis. However, there is an ongoing debate about long-term changes and cytotoxic effects in the CNS due to the systemic inflammation. Here, we show the brain-specific host response during and after COVID-19. We profile single-nucleus transcriptomes and proteomes of brainstem tissue from deceased COVID-19 patients who underwent rapid autopsy. We detect a disease phase-dependent inflammatory type-I interferon response in acute COVID-19 cases. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation. One neuronal with direct focus on cranial nerve nuclei and one diffusely affecting the whole brainstem, the latter reflecting a bystander effect that spreads throughout the vascular unit and alters the transcriptional state of oligodendrocytes, microglia and astrocytes. Our results indicate that even without persistence of SARS-CoV-2 in the CNS, the tissue activates highly protective mechanisms, which also cause functional disturbances that may explain the neurological symptoms of COVID-19, triggered by strong systemic type-I IFN signatures in the periphery.


Subject(s)
COVID-19 , Virus Diseases , Inflammation , Encephalitis, Viral
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.24.22272768

ABSTRACT

Post-acute lung sequelae of COVID-19 are challenging many survivors across the world, yet the mechanisms behind are poorly understood. Our results delineate an inflammatory cascade of events occurring along disease progression within fibrovascular niches. It is initiated by endothelial dysfunction, followed by heme scavenging of CD163+ macrophages and production of CCL18. This chemokine synergizes with local CCL21 upregulation to influence the stromal composition favoring endothelial to mesenchymal transition. The local immune response is further modulated via recruitment of CCR7+ T cells into the expanding fibrovascular niche and imprinting an exhausted, T follicular helper like phenotype in these cells. Eventually, this culminates in the formation of tertiary lymphoid structures, further perpetuating chronic inflammation. Thus, our work presents misdirected immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and leads to profound tissue repurposing and chronic inflammation.


Subject(s)
Inflammation , Virus Diseases , COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.13.22269205

ABSTRACT

Background Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, e.g. by an overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. Methods We assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 spike protein and nucleocapsid, dsRNA, and non-structural protein Nsp3 in cultured cell lines and COVID-19 autopsy tissues. In a multicenter study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 nucleocapsid staining. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. Findings Publications show high variability in the detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. In our study, we show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and also provide recommendations for optimized sampling and analysis. 116 of 122 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM and IHC sections as a reference and for training purposes. Interpretation Since detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL